Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
نویسندگان
چکیده
F-type H+-ATP synthases synthesize ATP from ADP and phosphate using the energy supplied by a transmembrane electrochemical potential difference of protons. Rotary subunit movements within the enzyme drive catalysis in either an ATP hydrolysis or an ATP synthesis direction respectively. To monitor these subunit movements and associated conformational changes in real time and with subnanometre resolution, a single-molecule FRET (fluorescence resonance energy transfer) approach has been developed using the double-labelled H+-ATP synthase from Escherichia coli. After reconstitution into a liposome, this enzyme was able to catalyse ATP synthesis when the membrane was energized.
منابع مشابه
Binding of single nucleotides to H+-ATP synthases observed by fluorescence resonance energy transfer.
F(0)F(1)-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The enzyme has three catalytic nucleotide binding sites, one on each beta-subunit; three non-catalytic binding sites are located mainly on each alpha-subunit. In order to observe substrate binding to the enzyme, the H(+)-ATP synthase from Escherichia coli was labelled selectively with the fluore...
متن کاملSubunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.
Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrate...
متن کاملMovements of the e-subunit during catalysis and activation in single membrane-bound H -ATP synthase
F0F1-ATP synthases catalyze proton transport-coupled ATP synthesis in bacteria, chloroplasts, and mitochondria. In these complexes, the e-subunit is involved in the catalytic reaction and the activation of the enzyme. Fluorescencelabeled F0F1 from Escherichia coli was incorporated into liposomes. Single-molecule fluorescence resonance energy transfer (FRET) revealed that the e-subunit rotates s...
متن کاملAnalyzing conformational changes in single FRET-labeled A1 parts of archaeal A1AO-ATP synthase
ATP synthases utilize a proton motive force to synthesize ATP. In reverse, these membrane-embedded enzymes can also hydrolyze ATP to pump protons over the membrane. To prevent wasteful of ATP hydrolysis, distinct control mechanisms exist for ATP synthases in bacteria, archaea, chloroplasts and mitochondria. Single-molecule Förster resonance energy transfer demonstrated that the C-terminus of ro...
متن کاملThe proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk.
The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 33 Pt 4 شماره
صفحات -
تاریخ انتشار 2005